Top 5 NLUs in India: Get detailed insights by ranking, placements & cut-offs

Fractions as Division for CLAT - Practice Questions & MCQ

Edited By admin | Updated on Oct 06, 2023 06:35 PM | #CLAT

Quick Facts

  • 5 Questions around this concept.

Solve by difficulty

What percent of $\frac{3}{7}$ is $\frac{1}{105}$?

What percent of $\frac{1}{2}$ is:

What percent of $\frac{7}{8}$ is:

Concepts Covered - 1

Fractions as Division

Understanding Fractions:

  • A fraction represents a part of a whole.
  • It consists of a numerator and a denominator, separated by a slash (/).
  • The numerator represents the number of parts we have, and the denominator represents the total number of equal parts.

Example: In the fraction 3/5, 3 is the numerator and 5 is the denominator. It means we have 3 out of 5 equal parts.

Understanding Decimals:

  • Decimals are another way to represent fractional numbers.
  • They are based on the base-10 system and consist of a whole number part and a decimal part.
  • The decimal point separates the whole number part from the decimal part.

Example: In the decimal number 0.75, 0 is the whole number part and 75 is the decimal part. It can be read as "point seven five" or "seventy-five hundredths."

Understanding Percents:

  • Percentages are fractions or decimals expressed out of 100.
  • The symbol "%" is used to represent percentages.
  • Percentages are useful for comparing different proportions or quantities.

Example: 50% is equal to 1/2 or 0.5.

Converting Fractions to Percentages:

  • To convert a fraction to a percentage, multiply the fraction by 100.

Example: Convert 3/4 to a percentage.

3/4 = (3/4) * 100 = 75%

Converting Decimals to Percentages:

  • To convert a decimal to a percentage, multiply the decimal by 100.

Example: Convert 0.6 to a percentage.

0.6 \times 100 = 60%

Relation between Fraction and Percentage
Sr. No. Fraction Percentage
1 ½ 50%
2 1/3 33.33%
3 ¼ 25%
4 1/5 20%
5 1/6 16.66% = 16%
6 1/7 14.28 % = 14 %
7 1/8 12.5 % = 12%
8 1/9 11.11% = 11%
9 1/10 10% =
10 1/11 9.09% = 9%
11 1/12 8.33 % = 8%
12 1/13 7.69% = 7%
13 1/14 7.14 % = 7%
14 1/15 6.67 % = 6 %
15 1/16 6.25 % = 6%
16 1/17 5.88 % = 5%
17 1/18 5.55% = 5 %
18 1/19 5.26 % = 5%
19 1/20 5%

Converting Percentages to Fractions:

  • To convert a percentage to a fraction, write the percentage as a fraction with a denominator of 100 and simplify, if possible.

Example: Convert 25% to a fraction.

25% = 25/100 = 1/4

Converting Percentages to Decimals:

  • To convert a percentage to a decimal, divide the percentage by 100.

Example: Convert 80% to a decimal.

80% = 80/100 = 0.8

Tips and Tricks:

  • To find a certain percentage of a number, multiply the number by that percentage.

Example: What is 25% of 80?

25%\text{ of} \: 80 = (25/100) \times 80 = 0.25 \times 80 = 20

  • To find the percentage change between two numbers, use the formula:

Percentage change = [(New Value - Old Value) / Old Value] * 100

Example: If the price of a product increased from Rs. 100 to Rs. 120, the percentage change is:

Percentage change = [(120 - 100) / 100] \times 100 = 20%

Introduction:

A quilt is formed by sewing many different pieces of fabric together. The pieces can vary in color, size, and shape. The combinations of different kinds of pieces provide for an endless possibility of patterns. Much like the pieces of fabric, mathematicians distinguish among different types of numbers. The kinds of numbers in an expression provide for an endless possibility of outcomes. You have already studied counting numbers, whole numbers, and integers. In this chapter, we will learn about other types of numbers and their properties.

Does the term “real numbers” seem strange to you? Are there any numbers that are not “real”, and, if so, what could they be? For centuries, the only numbers people knew about were what we now call the real numbers. Then mathematicians discovered the set of imaginary numbers. You won't encounter imaginary numbers in this course, but you will later on in your studies of algebra.

In our day to day life we deal with different types of numbers which can be broady classified as:

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top